

<u>The Askaryan Radio Array:</u> Current Status and Future Plans

Brian Clark for the ARA Collaboration

The Ohio State University Department of Physics and the Center for Cosmology and Astroparticle Physics (CCAPP)

> August 11, 2017 TeV Particle Astrophysics 2017—Columbus, OH

Why UHE Study Neutrinos?

UHE means 10¹⁶ eV and above

Astrophysical Motivation: Only probes of the highest energies at cosmic distances

- Cosmic rays >10^{19.5} eV attenuated by GZK effect
- Gamma rays >~1 TeV pairannihilate on CMB/EBL

Particle Physics Motivation: Probe cross sections at energies above accelerators

 An EeV (10¹⁸ eV) neutrino in ice = COM energy of ~45 TeV

¹¹ August 2017

П ТНЕ ОН

The Ohio State University

USA:

Cal Poly The Ohio State University University of Chicago University of Delaware University of Kansas University of Maryland University of Nebraska University of Wisconsin – Madison

ARA is an International

Collaboration

UK:	University College London
Japan:	Chiba University
Taiwan:	National Taiwan University
Israel:	Weizmann Institute of Science

FCAPP

The Ohio State University

Content of an ARA Station

- Antenna array looking for Askaryan emission from neutrinos
- 16 antennas (8 Vpol, 8 Hpol, 200-850 MHz bandwidth)
- Cubical lattice at 200m depth
- Energy range: $10^{16} \rightarrow 10^{19} \text{ eV}$

VPol HPol Antenna Antenna

Current Status of the Instrument

- Under phased construction in the ice near South Pole
- Phase 1 goal is ~37 stations, spaced 2km apart, covering ~100 km² of ice
- Prototype ("Testbed") + 3 stations deployed so far

ARA Trigger and Data

- Power: 10ns integrated power > 5.3 × thermal noise floor
- Coincidence: trigger in 3/8 antennas of same polarization in ~110 ns
- Thresholds maintain a global ~7 Hz/sta trigger rate $\rightarrow 10^8$ evts/year/st

CAPP

The Ohio State University

THE OHIO STATE UNIVERSITY

Thanks to M. Lu for plot digitization. ARA '17: POS (ICRC2017) 966 ARIANNA '17: POW (ICRC2017) 977

ARA Present and Future (clark.2668@osu.edu)

ССАРР

Solar Flare in the Testbed Prototype

- Testbed activated in February 2011, detected Feb 15 X-2.2 Solar Flare
- The V-Pol RF reconstruction peak tracks the sun across the sky*
- Systematic offset in theta is possible opportunity to calibrate the array (still under study)
- First reconstructable emission of extraterrestrial origin to trigger ARA — paper with details soon

*Sun locations computed with C++ Solar Position library by the Platforma de Solar America

2017 APS April Meeting Vol 62, No 1.

Power

New Stations

- ARA will deploy three new stations (A4, A5, A6) in 2017
- Robustly tested: run, fully assembled, for >1 mo in the north @ UW PSL
- DAQ runs ~4 days at -40 C in thermal chamber at OSU CCAPP Antarctic RF Test Facility
- All are equipped with new, exciting electronics
 - A power-broker to improve system monitoring and control
 - Cheaper, more compact, and more flexible signal conditioning
- A5 will deploy with a phased array trigger string

Signal Conditioning

ARA4 DAQ Box

New Stations

- ARA will deploy three new stations (A4, A5, A6) in 2017
- Robustly tested: run, fully assembled, for >1 mo in the north @ UW PSL
- DAQ runs ~4 days at -40 C in thermal chamber at OSU CCAPP Antarctic RF Test Facility
- All are equipped with new, exciting electronics
 - A power-broker to improve system monitoring and control
 - Cheaper, more compact, and more flexible signal conditioning
- A5 will deploy with a phased array trigger string

DAQ Box (OSU)

ARA4 in PSL Refrigerator

Precision Time Protocol

- Serendipitous opportunity: all new stations will be equipped with Precision Time Protocol \rightarrow synchronization at ~10 ns level
- Added benefit: clock sync with IceCube White Rabbit System
 → At the analysis stage, can look for neutrino RF from IceCube events in
 multiple stations (far stretch, but high payoff)
- Work left to do: firmware and understanding potential event geometry

J. Avva et al., Nim A, Vol 869, 2017

11 August 2017

ARA Present and Future (clark.2668@osu.edu)

A. Vieregg et al.,

- An advanced system enhances neutrino sensitivity and lowers energy threshold to ~10 PeV
- Cross-check IceCube flux
- Resolve whether IceCube is seeing a spectral cutoff

10	Station Configuration	Power Law	Power Law	Optimistic	Pessimistic
UL			with Cutoff	Cosmogenic	Cosmogenic
3 years livetime	16-antenna	0.9	0.0	7.7	2.3
	16-antenna, phased	3.8	0.1	19.6	6.0
	400-antenna, phased	18.4	2.2	52.9	15.6

Summary

- Projections for ARA sensitivity are able to probe into cosmogenic and production models.
- New stations have more *in-situ* control than every before, enhancing detector operational efficiency.
- ARA will double in size this next pole season.
- Phased array deployment on A5 in 2017 will demonstrate potential for reducing ARA's threshold.

United States – Israel Binational Science Foundation

The Connolly Group at OSU and ARA is generously supported by:

- NSF GRFP Award DGE-1343012
- NSF CAREER Award 1255557
- NSF Grant 1404266 and NSF BigData Grant 1250720
- The Ohio Supercomputer Center
- The OSU Department of Physics and Astronomy
- The OSU Center for Cosmology and Astroparticle Physics
- US-Israel Binational Science Foundation Grant 2012077

Back-up Slides

Why Study Neutrinos: Astrophysical Messengers

Astrophysical Messengers Two Sources of Neutrinos

- Predicted "BZ Flux": pions from GZK process decay into neutrinos
- "Source Flux": Neutrinos from the CR accelerators
 - Gamma Ray Bursts (GRB)
 - Active Galactic Nuclei (AGN)
 - Etc.

Neutrinos have attractive properties

- Weakly interacting: travel cosmic distances unattenuated
- Chargeless: not deflected by (inter) galactic magnetic field
 → point back to source!

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\rightarrow e^{+} + \nu_{e} + \overline{\nu_{\mu}} + \nu_{\mu}$$

Why Study Neutrinos: Particle Physics Probes

- Probe cross-sections at energies above accelerators
- Ex: An EeV (10¹⁸ eV) neutrino interacting in ice has COM energy of ~60 TeV (note: LHC 14 TeV)

Radio: Askaryan Effect

- Neutrino interaction in dense media creates shower of charged particles
- ~20% more electrons than positrons —"bunch" of particles moving through media and radiating
- Wavelengths the size of the bunch (~cm) add coherently, producing a characteristic broadband (200 MHz → 1GHz), bipolar, impulsive <u>radio signal</u>
- Conical emission, strongest signal "on cone"
- Two requirements for successful experiment
 - Radio transparent medium: ice
 - Enormous volume: Antarctica

Alternate Station Schematic

ARA Trigger and Data

Power Trigger: integrated power over ~10ns 21000 Voltage must be $> 5.3 \times$ thermal noise floor 500 Coincidence requirement: trigger in 3/8 antennas of same polarization in \sim 110 ns -500 Thresholds set to maintain a global ~7Hz/sta trigger rate $\rightarrow 10^8$ evts/year/st -1000Event = 16×250 ms waveforms -50 -150 -10050 0 Time (ns) We calibrate with local and distant pulsers Power Integration ×10³ Power (mV^2) 3500 3000 calibration triggered 2500 pulser antennas 2000 antenna untriggered 1500 antennas 1000 Threshold 500 0 -100-50 50 0 -150 Time (ns)

100

Calibration Pulser Event

Testbed Station

100

The Ohio State University

Filtering Data

- First analysis in 2014 did interferometry on all data at 150 ~ms/event, this is >4 years of serial compute time
- Design filters around the "hit pattern" observed in the event
 - Time-sequence filter
 - Wavefront-RMS filter
- For 10¹⁸eV neutrinos and fixed signal strength, both reject 99.92% noise while keeping ~80% of neutrinos.
- Can use time intensive algorithms, like interfering one event at multiple radii (~3s/event), for remaining data

THE OHIO STATE UNIVERSITY

Rapid prototyping and testing of electronics

Pick & Place machine for rapid assembly.

Large thermal chamber.

Large RF/ anechoic chamber.

CARTFacility

RF ANECHOIC CHAMBER

ARA Present and Future (clark.2668@osu.edu)

Testing at cold at OSU.

Full station assembled in freezer at UW-Madison.

Signal Identification: In Software

Signal Must be Broad in Frequency

- Impulsive signals are broadband
- Anthropogenic backgrounds are usually narrow band (people talking on radio, for example)

ССАРР

How to Analyze Data: Interferometric Maps

- Punitive source angle \rightarrow Time Delay \rightarrow Correlation Value for that delay
- Take Hilbert envelope to interpret as power

ARA Present and Future (clark.2668@osu.edu)

How to Analyze Data: Interferometric Maps

- Punitive source angle \rightarrow Time Delay \rightarrow Correlation Value for that delay
- Plot that correlation value for all points on the sky, for all pairs of antennas

Searching for Diffuse Neutrinos

Signal Strength

- Combination cut on signal and cross-correlation strength
- Tune cuts on 10% of data
- Choose cut line for best expected flux limit

Figures by C. Pfendner

Searching for Diffuse Neutrinos

Interferometry

- Ask for unique, well defined peaks: rejects >95% of thermal noise
- Reject all events from human campsites or that have repeating RF direction

Searching for Diffuse Neutrinos

Interferometry

- Ask for unique, well defined peaks: rejects >95% of thermal noise
- Reject all events from human campsites or that have repeating RF direction

The Ohio State University

Testbed Search for Diffuse Neutrinos

- Expected background: 0.06, Expected neutrinos: 0.02, 0 Events survived cuts
- Limits on diffuse neutrino flux from 415 days of ARA Testbed.
- Predictions for ARA 37 limits (blue line) are competitive and capable of model discrimination.

P. Allison et al for the ARA Collaboration Astropart Phys, Vol 70 (2015).

Testbed GRB Search

- "Relaxed" diffuse search: stricter cuts on timing and source direction
- Blinded search strategy, using surrounding background to set cuts
- Expected background: 0.12, Expected neutrinos: 1.7e-5, O events survived cuts
- Limits on the GRB flux from 57 GRBs from 224 days of ARA testbed

P. Allison et al, for the ARA Collaboration. Astropart Phys, Vol 88 (2017).

 First quasi-diffuse flux limit above 10¹⁶ eV

Two Stations Diffuse Limit

P. Allison et al, for the ARA Collaboration. Phys. Rev. D 93, 082003 (2016).

11 August 2017

ARA Present and Future (clark.2668@osu.edu)

Faster Reconstruction Techniques

- Radiospline: utilizes precomputed delay tables for allowed paths through the ice
- Parallelized with OpenCL and implemented on GPUs
- 3 times faster than previous technique (120ms/event → 50ms/event)

ARA Smart Power System (ASPS)

- Previous stations had no power granularity
- Any subsystem shutdown strained the entire electronics chain
- So, we introduced a power broker and monitoring interface
- The uC we chose (Tiva TM4C) gives all new stations PTP (precisiontime-protocol) capability
 - Cross station clock syncing \rightarrow Multi-station events
 - Clock sync to IceCube White
 Rabbit system → ARA+IceCube
 coincidence w/ sub-s precision

ССАРР

ARA Advanced Front End System (ARAFE)

- Old stations have static, physically fragile, and expensive (~\$2k/chan) signal conditioning
- Gain is unmatched between channels and subject to seasonal variations
- So, we switched to micro-controlled
 0.25 dB digital step attenuators
 - Better use of ARA dynamic range, easier analyses
 - In-situ seasonal temperature corrections \rightarrow more stable DAQ

THE OHIO STATE UNIVERSITY

- Deep (1751m), South Pole Ice Core hole drilled in Jan 2016 near WT3
- We will deploy a pulser to ~800m, raise it with cm depth precision, while firing RF at the ARA stations
- Should give us details about radio propagation in the ice around the stations
- See C. Pfendner's talk on simulation work which would benefit from this data.

