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Why UHE Study Neutrinos?
UHE means 1016 eV and above

Astrophysical Motivation: Only probes 
of the highest energies at cosmic 
distances
• Cosmic rays >1019.5 eV attenuated 

by GZK effect
• Gamma rays >~1 TeV pair-

annihilate on CMB/EBL

Particle Physics Motivation: Probe 
cross sections at energies above 
accelerators
• An EeV (1018 eV ) neutrino in ice = 

COM energy of ~45 TeV

𝛾-rays

cosmic-rays

neutrinos
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Plot by A. Connolly,
Adapted from S. Swordy
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USA:
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The Ohio State University
University of Chicago
University of Delaware
University of Kansas
University of Maryland
University of Nebraska
University of Wisconsin – Madison

UK:  University College London
Japan: Chiba University
Taiwan: National Taiwan University
Israel: Weizmann Institute of Science

ARA is an International 
Collaboration

Figure credit: C. Pfendner

ARA Present and Future (clark.2668@osu.edu) 3



Content of an ARA Station

• Antenna array looking for 
Askaryan emission from neutrinos

• 16 antennas (8 Vpol, 8 Hpol, 200-
850 MHz bandwidth)

• Cubical lattice at 200m depth
• Energy range: 1016 → 1019 eV
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Instrumentation 
deployment in 17 / 18. 

Current Status of the Instrument
• Under phased construction in the ice near South Pole
• Phase 1 goal is ~37 stations, spaced 2km apart, covering ~100 km2 of ice
• Prototype (“Testbed”) + 3 stations deployed so far

Testbed
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Planned ARA Station



ARA Trigger and Data
• Power: 10ns integrated power > 5.3 ⨉

thermal noise floor

• Coincidence: trigger in 3/8 antennas of 
same polarization in ~110 ns

• Thresholds maintain a global ~7 Hz/sta
trigger rate → 108 evts/year/st

• We calibrate with local and distant pulsers
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Calibration Pulser
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Status of Analyses
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Thanks to M. Lu for plot digitization.
ARA ’17: POS (ICRC2017) 966
ARIANNA ’17: POW (ICRC2017) 977 

ARA Phase 1 starts 
eating into cosmogenic 
models.



Solar Flare in the Testbed Prototype
• Testbed activated in February 

2011, detected Feb 15 X-2.2 
Solar Flare

• The V-Pol RF reconstruction peak 
tracks the sun across the sky*

• Systematic offset in theta is 
possible opportunity to calibrate 
the array (still under study)

• First reconstructable emission of 
extraterrestrial origin to trigger 
ARA — paper with details soon
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New Stations
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• ARA will deploy three new stations (A4, A5, A6) in 2017
• Robustly tested: run, fully assembled, for >1 mo in the north @ UW PSL
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• DAQ runs ~4 days at -40 C in 
thermal chamber at OSU CCAPP 
Antarctic RF Test Facility  

• All are equipped with new, exciting 
electronics
– A power-broker to improve 

system monitoring and control
– Cheaper, more compact, and 

more flexible signal 
conditioning

• A5 will deploy with a phased array 
trigger string

ARA4 DAQ BoxSignal 
Conditioning

Power 
Broker
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• DAQ runs ~4 days at -40 C in 
thermal chamber at OSU CCAPP 
Antarctic RF Test Facility  

• All are equipped with new, exciting 
electronics
– A power-broker to improve 

system monitoring and control
– Cheaper, more compact, and 

more flexible signal 
conditioning

• A5 will deploy with a phased array 
trigger string

ARA4 in PSL Refrigerator

Downhole Electronics 
(Chiba + NTU)

Power Box 
(UMD)

DAQ Box (OSU)



Precision Time Protocol
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• Serendipitous opportunity: all new stations will be equipped with 
Precision Time Protocol → synchronization at ~10 ns level

• Added benefit: clock sync with IceCube White Rabbit System                      
→ At the analysis stage, can look for neutrino RF from IceCube events in 
multiple stations (far stretch, but high payoff)

• Work left to do: firmware and understanding potential event geometry

𝜈#

Radio 
Cherenkov

Optical 
Cherenkov

ARA IceCube

𝜇



Phased Array w/ A5
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J. Avva et al., Nim A, Vol 869, 2017
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A. Vieregg, ICRC 2017 NU011

Single 
Antenna

2-antenna
beam

3-antenna
beam

• Beamform before triggering → higher sensitivity
• For fixed trigger rate, threshold ∝ 𝑁�

• 8 VPol antenna phased array deployed down single
hole inside A5



Phased Array Sensitivity

11 August 2017

A. Vieregg et al., 
JCAP 2 (2016) 005
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• An advanced system 
enhances neutrino sensitivity 
and lowers energy threshold 
to ~10 PeV

• Cross-check IceCube flux 

• Resolve whether IceCube is 
seeing a spectral cutoff

IceCube 
Contained IceCube 

EHE Search

10 Stations, 
400 Phased 
Antennas

10 Stations, 16 
Phased Antennas

10 Stations, 16 
UnPhased Antennas

10 
stations, 

3 years 
livetime



Summary
• Projections for ARA sensitivity are able to probe into cosmogenic 

and production models.
• New stations have more in-situ control than every before, 

enhancing detector operational efficiency.
• ARA will double in size this next pole season.
• Phased array deployment on A5 in 2017 will demonstrate potential 

for reducing ARA’s threshold.
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The Connolly Group at OSU and ARA is generously supported by:
• NSF GRFP Award DGE-1343012
• NSF CAREER Award 1255557
• NSF Grant 1404266 and NSF BigData Grant 1250720
• The Ohio Supercomputer Center
• The OSU Department of Physics and Astronomy
• The OSU Center for Cosmology and Astroparticle Physics
• US-Israel Binational Science Foundation Grant 2012077
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Back-up Slides
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Why Study Neutrinos: Astrophysical Messengers
• Cosmic rays >1019.5 eV attenuated, 

possibly by GZK effect, e.g.

𝑝 + 𝛾 → ∆,→ 𝑝 𝑛 + 𝜋/ 𝜋,

→ Screens extragalactic (>100 MPc)
sources

• 𝛾-rays annihilate w/ CMB @ ~1 TeV
𝛾-rays

cosmic-rays

neutrinos
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Plot by A. Connolly,
Adapted from S. Swordy
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Astrophysical Messengers
Two Sources of Neutrinos
• Predicted “BZ Flux”: pions from 

GZK process decay into neutrinos
• “Source Flux”: Neutrinos from the 

CR accelerators
– Gamma Ray Bursts (GRB)
– Active Galactic Nuclei (AGN)
– Etc.

Neutrinos have attractive properties
• Weakly interacting: travel cosmic 

distances unattenuated
• Chargeless: not deflected by 

(inter) galactic magnetic field 
→ point back to source!

AGN Centaurus A. 
(ESO public image release)
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𝜋, → 𝜇, + 𝜈#
→ 𝑒, + 𝜈1 + �̅�# + 𝜈#
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Why Study Neutrinos: Particle Physics Probes
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• Probe cross-sections at energies above accelerators

• Ex: An EeV (1018 eV ) neutrino interacting in ice has COM 
energy of ~60 TeV (note: LHC  14 TeV)

𝐸456 = 4	𝐸:	𝑚<
�

COM = Center of Momentum
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• Neutrino interaction in dense media creates 
shower of charged particles

• ~20% more electrons than positrons —”bunch” 
of particles moving through media and radiating

• Wavelengths the size of the bunch (~cm) add 
coherently, producing a characteristic 
broadband (200 MHz → 1GHz), bipolar, 
impulsive radio signal

• Conical emission, strongest signal 
“on cone”

Radio: Askaryan Effect
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• Two requirements for successful 
experiment
– Radio transparent medium: ice
– Enormous volume: Antarctica

Polar 
diagram of 
E-Field

J. Alvarez-
Muñoz & E. 
Zas (2005)

19
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Alternate Station Schematic
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ARA Trigger and Data
• Power Trigger: integrated power over ~10ns 

must be > 5.3 ⨉ thermal noise floor
• Coincidence requirement: trigger in 3/8 

antennas of same polarization in ~110 ns
• Thresholds set to maintain a global ~7Hz/sta

trigger rate → 108 evts/year/st
• Event = 16 x 250ns waveforms
• We calibrate with local and distant pulsers
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Calibration Pulser Event
Testbed Station

Power
Integration

Threshold
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Filtering Data
• First analysis in 2014 did interferometry on all data at 150 ~ms/event, 

this is >4 years of serial compute time
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• Design filters around the “hit 
pattern” observed in the event
– Time-sequence filter
– Wavefront-RMS filter

• For 1018eV neutrinos and fixed 
signal strength, both reject 
99.92% noise while keeping 
~80% of neutrinos. 

• Can use time intensive 
algorithms, like interfering one 
event at multiple radii 
(~3s/event), for remaining data

Time sequence
Wavefront RMS

M. Lu et al. for the ARA Collaboration.
PoS (ICRC 2017) 966



Rapid prototyping 
and testing of 
electronics

RF circuit board mill.

Pick & Place machine 
for rapid assembly.

Large thermal chamber.

Large RF/ 
anechoic chamber.
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Testing at cold 
at OSU.

Full station assembled in 
freezer at UW-Madison.



Signal Identification: In Software

Signal Must be Broad in Frequency
• Impulsive signals are broadband 
• Anthropogenic backgrounds are usually narrow band (people 

talking on radio, for example)
Calibration Pulser Event

Testbed Station
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How to Analyze Data: Interferometric Maps
• Punitive source angle → Time Delay → Correlation Value for that delay
• Take Hilbert envelope to interpret as power

𝜃> = arcsin
𝑐	Δ𝑡
𝐷

Antenna 2 Waveform
Antenna 3 Waveform

Antenna 2 & 3
Waveform 

Correlation

Antenna 2 & 3
Waveform 

Correlation
Hilbert

Envelope
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How to Analyze Data: Interferometric Maps
• Punitive source angle → Time Delay → Correlation Value for that delay
• Plot that correlation value for all points on the sky, for all pairs of 

antennas

Peak in final 
map gives 

source 
direction
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Figures by E. Hong
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Searching for Diffuse Neutrinos
Signal Strength
• Combination cut on signal and cross-correlation strength
• Tune cuts on 10% of data
• Choose cut line for best expected flux limit
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Searching for Diffuse Neutrinos
Interferometry
• Ask for unique, well defined peaks:  rejects >95% of thermal noise
• Reject all events from human campsites or that have repeating RF 

direction

11 August 2017
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Searching for Diffuse Neutrinos
Interferometry
• Ask for unique, well defined peaks:  rejects >95% of thermal noise
• Reject all events from human campsites or that have repeating RF 

direction
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Testbed Search for Diffuse Neutrinos
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P. Allison et al for the ARA Collaboration
Astropart Phys, Vol 70 (2015).

• Expected background: 0.06, 
Expected neutrinos: 0.02, 
0 Events survived cuts

• Limits on diffuse neutrino 
flux from 415 days of ARA 
Testbed.

• Predictions for ARA 37 limits 
(blue line) are competitive 
and capable of model 
discrimination.
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Testbed GRB Search
• “Relaxed” diffuse search: 

stricter cuts on timing and 
source direction 

• Blinded search strategy, 
using surrounding 
background to set cuts

• Expected background: 0.12, 
Expected neutrinos: 1.7e-5, 
0 events survived cuts

• Limits on the GRB flux from 
57 GRBs from 224 days of 
ARA testbed

• First quasi-diffuse flux limit 
above 1016 eV

11 August 2017

• With 10% burned sample

- background time range: +- 1 hour from a GRB with +- 5 min gap

• Total ~67,000 events from 57 selected GRBs’ background analysis 
period from 10% burned data set

• Estimated number of events from 90% data set with optimized cuts 
(for entire 57 GRBs)

- Expected BG events in signal period: 0.106

- Expected BG events in background period: 1.166

- Expected ν events in signal period: 1.47e-05

3

Background Analysis

time

GRB
+1hr-1hr background 

analysis period
(55min)

signal period

+5min-5min

background 
analysis period

(55min)
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P. Allison et al, for the ARA Collaboration.
Astropart Phys, Vol 88 (2017).
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Two Stations Diffuse Limit

Projected event numbers for 
three models of the UHE 
neutrino flux with 37 
stations and 3 years 
livetime.

Power to discriminate 
between models after 3 
years livetime.

P. Allison et al, for the ARA Collaboration.
Phys. Rev. D 93, 082003 (2016).
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Faster Reconstruction Techniques
• Radiospline: utilizes pre-

computed delay tables for 
allowed paths through the ice

• Parallelized with OpenCL and 
implemented on GPUs

• 3 times faster than previous 
technique (120ms/event → 
50ms/event)
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M. Beheler-Amass, et al. for the ARA Collaboration
PoS (ICRC 2017) 1054



ARA Smart Power System (ASPS)
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• Previous stations had no power 
granularity

• Any subsystem shutdown strained 
the entire electronics chain

• So, we introduced a power broker 
and monitoring interface

• The uC we chose (Tiva TM4C) gives 
all new stations PTP  (precision-
time-protocol) capability 
– Cross station clock syncing            
→ Multi-station events

– Clock sync to IceCube White 
Rabbit system → ARA+IceCube
coincidence w/ sub-s precision
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ARA Advanced Front End System (ARAFE)
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• Old stations have static, physically 
fragile, and expensive (~$2k/chan) 
signal conditioning

• Gain is unmatched between channels 
and subject to seasonal variations

• So, we switched to micro-controlled 
0.25 dB digital step attenuators
– Better use of ARA dynamic range, 

easier analyses
– In-situ seasonal temperature 

corrections → more stable DAQ
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Calibration
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WT3

Testbed
• Deep (1751m), South Pole Ice Core hole 

drilled in Jan 2016 near WT3

• We will deploy a pulser to ~800m, raise 
it with cm depth precision, while firing 
RF at the ARA stations

• Should give us details about radio 
propagation in the ice around the  
stations

• See C. Pfendner’s talk on simulation 
work which would benefit from this 
data.

PC: Mike Lucibella and 
USAP “Antarctic Sun”

Spice core hole 
during drilling
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